skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Vink, Jacco"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The recent survey of the core-collapse supernova remnant Cassiopeia A (Cas A) with the MIRI instrument on board the James Webb Space Telescope (JWST) revealed a large structure in the interior region, referred to as the “Green Monster.” Although its location suggests that it is an ejecta structure, the infrared properties of the “Green Monster” hint at a circumstellar medium (CSM) origin. In this companion paper to the JWST Cas A paper, we investigate the filamentary X-ray structures associated with the “Green Monster” using Chandra X-ray Observatory data. We extracted spectra along the “Green Monster” as well as from shocked CSM regions. Both the extracted spectra and a principal component analysis show that the “Green Monster” emission properties are similar to those of the shocked CSM. The spectra are well fit by a model consisting of a combination of a nonequilibrium ionization model and a power-law component, modified by Galactic absorption. All the “Green Monster” spectra show a blueshift corresponding to a radial velocity of around −2300 km s−1, suggesting that the structure is on the near side of Cas A. The ionization age is aroundnet≈ 1.5 × 1011cm−3s. This translates into a preshock density of ∼12 cm−3, higher than previous estimates of the unshocked CSM. The relatively highnetand relatively low radial velocity suggest that this structure has a relatively high density compared to other shocked CSM plasma. This analysis provides yet another piece of evidence that the CSM around Cas A’s progenitor was not that of a smooth steady wind profile. 
    more » « less
  2. Abstract JWST observations of the young Galactic supernova remnant Cassiopeia A revealed an unexpected structure seen as a green emission feature in colored composite MIRI F1130W and F1280W images—hence dubbed the Green Monster—that stretches across the central parts of the remnant in projection. Combining the kinematic information from NIRSpec and the MIRI Medium Resolution Spectrograph with the multiwavelength imaging from NIRCam and MIRI, we associate the Green Monster with circumstellar material (CSM) that was lost during an asymmetric mass-loss phase. MIRI images are dominated by dust emission, but their spectra show emission lines from Ne, H, and Fe with low radial velocities indicative of a CSM nature. An X-ray analysis of this feature in a companion paper supports its CSM nature and detects significant blueshifting, thereby placing the Green Monster on the nearside, in front of the Cas A supernova remnant. The most striking features of the Green Monster are dozens of almost perfectly circular 1″–3″ sized holes, most likely created by interaction between high-velocity supernova ejecta material and the CSM. Further investigation is needed to understand whether these holes were formed by small 8000–10,500 km s−1N-rich ejecta knots that penetrated and advanced out ahead of the remnant’s 5000–6000 km s−1outer blast wave or by narrow ejecta fingers that protrude into the forward-shocked CSM. The detection of the Green Monster provides further evidence of the highly asymmetric mass loss that Cas A’s progenitor star underwent prior to its explosion. 
    more » « less
    Free, publicly-accessible full text available November 1, 2025
  3. Abstract The origin of cosmic rays is a pivotal open issue of high-energy astrophysics. Supernova remnants are strong candidates to be the Galactic factory of cosmic rays, their blast waves being powerful particle accelerators. However, supernova remnants can power the observed flux of cosmic rays only if they transfer a significant fraction of their kinetic energy to the accelerated particles, but conclusive evidence for such efficient acceleration is still lacking. In this scenario, the shock energy channeled to cosmic rays should induce a higher post-shock density than that predicted by standard shock conditions. Here we show this effect, and probe its dependence on the orientation of the ambient magnetic field, by analyzing deep X-ray observations of the Galactic remnant of SN 1006. By comparing our results with state-of-the-art models, we conclude that SN 1006 is an efficient source of cosmic rays and obtain an observational support for the quasi-parallel acceleration mechanism. 
    more » « less
  4. Abstract X-ray polarization is a unique new probe of the particle acceleration in astrophysical jets made possible through the Imaging X-ray Polarimetry Explorer. Here we report on the first dense X-ray polarization monitoring campaign on the blazar Mrk 421. Our observations were accompanied by an even denser radio and optical polarization campaign. We find significant short-timescale variability in both X-ray polarization degree and angle, including an ∼90° angle rotation about the jet axis. We attribute this to random variations of the magnetic field, consistent with the presence of turbulence but also unlikely to be explained by turbulence alone. At the same time, the degree of lower-energy polarization is significantly lower and shows no more than mild variability. Our campaign provides further evidence for a scenario in which energy-stratified shock-acceleration of relativistic electrons, combined with a turbulent magnetic field, is responsible for optical to X-ray synchrotron emission in blazar jets. 
    more » « less
    Free, publicly-accessible full text available June 20, 2026
  5. Abstract We report the Imaging X-ray Polarimetry Explorer (IXPE) polarimetric and simultaneous multiwavelength observations of the high-energy-peaked BL Lacertae object (HBL) 1ES 1959+650, performed in 2022 October and 2023 August. In 2022 October, IXPE measured an average polarization degree ΠX= 9.4% ± 1.6% and an electric-vector position angleψX= 53° ± 5°. The polarized X-ray emission can be decomposed into a constant component, plus a rotating component, with the rotation velocityωEVPA= (−117 ± 12) deg day−1. In 2023 August, during a period of pronounced activity of the source, IXPE measured an average ΠX= 12.4% ± 0.7% andψX= 20° ± 2°, with evidence (∼0.4% chance probability) for a rapidly rotating component withωEVPA= 1864 ± 34 deg day−1. These findings suggest the presence of a helical magnetic field in the jet of 1ES 1959+650 or stochastic processes governing the field in turbulent plasma. Our multiwavelength campaigns from radio to X-ray reveal variability in both polarization and flux from optical to X-rays. We interpret the results in terms of a relatively slowly varying component dominating the radio and optical emission, while rapidly variable polarized components dominate the X-ray and provide minor contribution at optical wavelengths. The radio and optical data indicate that on parsec scales the magnetic field is primarily orthogonal to the jet direction. On the contrary, X-ray measurements show a magnetic field almost aligned with the parsec jet direction. Confronting with other IXPE observations, we guess that the magnetic field of HBLs on subparsec scale should be rather unstable, often changing its direction with respect to the Very Long Baseline Array jet. 
    more » « less
    Free, publicly-accessible full text available April 8, 2026
  6. Abstract Blazars, supermassive black hole systems with highly relativistic jets aligned with the line of sight, are the most powerful long-lived emitters of electromagnetic emission in the Universe. We report here on a radio-to-gamma-ray multiwavelength campaign on the blazar BL Lacertae with unprecedented polarimetric coverage from radio to X-ray wavelengths. The observations caught an extraordinary event on 2023 November 10–18, when the degree of linear polarization of optical synchrotron radiation reached a record value of 47.5%. In stark contrast, the Imaging X-ray Polarimetry Explorer found that the X-ray (Compton scattering or hadron-induced) emission was polarized at less than 7.4% (3σconfidence level). We argue here that this observational result rules out a hadronic origin of the high-energy emission and strongly favors a leptonic (Compton scattering) origin, thereby breaking the degeneracy between hadronic and leptonic emission models for BL Lacertae and demonstrating the power of multiwavelength polarimetry to address this question. Furthermore, the multiwavelength flux and polarization variability, featuring an extremely prominent rise and decay of the optical polarization degree, is interpreted for the first time by the relaxation of a magnetic “spring” embedded in the newly injected plasma. This suggests that the plasma jet can maintain a predominant toroidal magnetic field component parsecs away from the central engine. 
    more » « less
    Free, publicly-accessible full text available May 16, 2026
  7. The X-ray polarization observations, made possible with the Imaging X-ray Polarimetry Explorer (IXPE), offer new ways of probing high-energy emission processes in astrophysical jets from blazars. Here, we report the first X-ray polarization observation of the blazar S4 0954+65 in a high optical and X-ray state. During our multi-wavelength (MWL) campaign of the source, we detected an optical flare whose peak coincided with the peak of an X-ray flare. This optical-X-ray flare most likely took place in a feature moving along the parsec-scale jet, imaged at 43 GHz by the Very Long Baseline Array (VLBA). The 43 GHz polarization angle of the moving component underwent a rotation near the time of the flare. In the optical band, prior to the IXPE observation, we measured the polarization angle to be aligned with the jet axis. In contrast, during the optical flare, the optical polarization angle was perpendicular to the jet axis; after the flare, it reverted to being parallel to the jet axis. Due to the smooth behavior of the optical polarization angle during the flare, we favor shocks as the main acceleration mechanism. We also infer that the ambient magnetic field lines in the jet were parallel to the jet position angle. The average degree of optical polarization during the IXPE observation was (14.3 ± 4.1)%. Despite the flare, we only detected an upper limit of 14% (at 3σlevel) on the X-ray polarization degree; however, a reasonable assumption on the X-ray polarization angle results in an upper limit of 8.8% (3σ). We modeled the spectral energy distribution (SED) and spectral polarization distribution (SPD) of S4 0954+65 with leptonic (synchrotron self-Compton) and hadronic (proton and pair synchrotron) models. Our combined MWL polarization observations and SED modeling tentatively disfavor the use of hadronic models for the X-ray emission in S4 0954+65. 
    more » « less
    Free, publicly-accessible full text available March 1, 2026
  8. Abstract We present initial results from a James Webb Space Telescope (JWST) survey of the youngest Galactic core-collapse supernova remnant, Cassiopeia A (Cas A), made up of NIRCam and MIRI imaging mosaics that map emission from the main shell, interior, and surrounding circumstellar/interstellar material (CSM/ISM). We also present four exploratory positions of MIRI Medium Resolution Spectrograph integral field unit spectroscopy that sample ejecta, CSM, and associated dust from representative shocked and unshocked regions. Surprising discoveries include (1) a weblike network of unshocked ejecta filaments resolved to ∼0.01 pc scales exhibiting an overall morphology consistent with turbulent mixing of cool, low-entropy matter from the progenitor’s oxygen layer with hot, high-entropy matter heated by neutrino interactions and radioactivity; (2) a thick sheet of dust-dominated emission from shocked CSM seen in projection toward the remnant’s interior pockmarked with small (∼1″) round holes formed by ≲0.″1 knots of high-velocity ejecta that have pierced through the CSM and driven expanding tangential shocks; and (3) dozens of light echoes with angular sizes between ∼0.″1 and 1′ reflecting previously unseen fine-scale structure in the ISM. NIRCam observations place new upper limits on infrared emission (≲20 nJy at 3μm) from the neutron star in Cas A’s center and tightly constrain scenarios involving a possible fallback disk. These JWST survey data and initial findings help address unresolved questions about massive star explosions that have broad implications for the formation and evolution of stellar populations, the metal and dust enrichment of galaxies, and the origin of compact remnant objects. 
    more » « less
  9. We report the X-ray polarization properties of the high-synchrotron-peaked (HSP) blazar PKS 2155−304 based on observations with the Imaging X-ray Polarimetry Explorer (IXPE). We observed the source between Oct 27 and Nov 7, 2023. We also conducted an extensive contemporaneous multiwavelength (MW) campaign. We find that during the first half (T1) of the IXPE pointing, the source exhibited the highest X-ray polarization degree detected for an HSP blazar thus far, (30.7 ± 2.0)%; this dropped to (15.3 ± 2.1)% during the second half (T2). The X-ray polarization angle remained stable during the IXPE pointing at 129.4° ±1.8° and 125.4° ±3.9° duringT1andT2, respectively. Meanwhile, the optical polarization degree remained stable during the IXPE pointing, with average host-galaxy-corrected values of (4.3 ± 0.7)% and (3.8 ± 0.9)% during theT1andT2, respectively. During the IXPE pointing, the optical polarization angle changed achromatically from ∼140° to ∼90° and back to ∼130°. Despite several attempts, we only detected (99.7% conf.) the radio polarization once (duringT2, at 225.5 GHz): with degree (1.7 ± 0.4)% and angle 112.5° ±5.5°. The direction of the broad pc-scale jet is rather ambiguous and has been found to point to the east and south at different epochs; however, on larger scales (> 1.5 pc) the jet points toward the southeast (∼135°), similarly to all of the MW polarization angles. Moreover, the X-ray-to-optical polarization degree ratios of ∼7 and ∼4 duringT1andT2, respectively, are similar to previous IXPE results for several HSP blazars. These findings, combined with the lack of correlation of temporal variability between the MW polarization properties, agree with an energy-stratified shock-acceleration scenario in HSP blazars. 
    more » « less
  10. Abstract We present multiwavelength polarization measurements of the luminous blazar Mrk 501 over a 14 month period. The 2–8 keV X-ray polarization was measured with the Imaging X-ray Polarimetry Explorer (IXPE) with six 100 ks observations spanning from 2022 March to 2023 April. Each IXPE observation was accompanied by simultaneous X-ray data from NuSTAR, Swift/XRT, and/or XMM-Newton. Complementary optical–infrared polarization measurements were also available in theB,V,R,I, andJbands, as were radio polarization measurements from 4.85 GHz to 225.5 GHz. Among the first five IXPE observations, we did not find significant variability in the X-ray polarization degree and angle with IXPE. However, the most recent sixth observation found an elevated polarization degree at >3σabove the average of the other five observations. The optical and radio measurements show no apparent correlations with the X-ray polarization properties. Throughout the six IXPE observations, the X-ray polarization degree remained higher than, or similar to, theR-band optical polarization degree, which remained higher than the radio value. This is consistent with the energy-stratified shock scenario proposed to explain the first two IXPE observations, in which the polarized X-ray, optical, and radio emission arises from different regions. 
    more » « less